First, let’s assume we have a pre-trained model for estimating the probability of the target and .
Estimating Lifetime Value using an optimization function
With a model containing client propensity of accepting the offer (yTaker), we can make a simple calculation for estimating CLTV:
Business Rules only approach
The first term of the equation is the expected revenue at the end of the fidelization period (FP), which is being renewed to 24 months. A second term is summed, comprised of the expected revenue in case the client does not accept the offer (and assuming no new offer is made in the remaining months – as such, he remains for “FP” months).
Business Rules + Propensity + Churn Model approach
Let’s now assume we have two models:
Propensity Model: we can calculate the probability of y_taker_N (i.e., of client accepting the offer)
Churn Model: we can predict the number of remaining months until the client churns
And that we also have some business rules embedded:
Survival Buyers: we can calculate global survival curves, for the complete customer base (Buyers), for clients which accept any new offer. These give us the average number of months until the client leaves the company, if he accepts an offer.
We can then create a slightly more complex optimization function.
Single-Task Machine Learning
Although this is a solution that can be quickly calculated in case pre-trained models are available for churn and taker tasks (which is good for quick proofs of concept and baseline performance), we are not using much of the knowledge which can be extracted from customer interaction.
A possible approach for using this is including the probabilities of accepting the offer and churning as features, as follows:
CLTV :: Propensity x OriginOffer x DestinationOffer x ChurnProbability
However, this would require maintaining three models in production, and assessing their quality constantly: a regression model for estimating customer lifetime value, propensity model and churn model. Also, if we wanted to do a multiple output approach, this would require having as many pre-trained models as the number of outputs.
Like this story?
Subscribe to Our Newsletter
Special offers, latest news and quality content in your inbox.
Signup single post
Recommended Articles
Artigo
Perspetivas da IA: melhores práticas de planeamento estratégico para 2026
6 de janeirode 2026 em
“Lista: Resumo
Descubra as melhores práticas de planeamento estratégico para projetos de IA e dados para aumentar o ROI, a eficiência e a tomada de decisões em 2025.
Algoritmos de aprendizagem automática explicados: guia prático para modelos de IA
30 de dezembrode 2025 em
Guia: Explicação
Descubra os algoritmos de aprendizagem automática explicados com exemplos reais e orientações sobre como selecionar e implementar os modelos de IA adequados.
Um guia prático para reduzir o tempo de lançamento no mercado
22 de dezembrode 2025 em
Guia: Como fazer
Descubra como acelerar o seu lançamento com estratégias práticas para reduzir o tempo de comercialização. Aprenda a aproveitar a IA, a automação e os processos enxutos.
Utilizamos cookies no nosso site para lhe proporcionar a experiência mais relevante, lembrando as suas preferências e visitas repetidas. Ao clicar em «Aceitar tudo», concorda com a utilização de TODOS os cookies. No entanto, pode visitar «Definições de cookies» para fornecer um consentimento controlado.
Este site usa cookies para melhorar a sua experiência enquanto navega pelo site. Dentre eles, os cookies classificados como necessários são armazenados no seu navegador, pois são essenciais para o funcionamento das funcionalidades básicas do site. Também usamos cookies de terceiros que nos ajudam a analisar e entender como você usa este site. Esses cookies serão armazenados no seu navegador somente com o seu consentimento. Você também tem a opção de recusar esses cookies. No entanto, recusar alguns desses cookies pode afetar a sua experiência de navegação.
Os cookies necessários são absolutamente essenciais para o funcionamento adequado do site. Estes cookies garantem as funcionalidades básicas e os recursos de segurança do site, de forma anónima.
Cookie
Duração
Descrição
cookielawinfo-checkbox-analytics
11 meses
Este cookie é definido pelo plugin GDPR Cookie Consent. O cookie é usado para armazenar o consentimento do utilizador para os cookies na categoria "Análises".
cookielawinfo-checkbox-funcional
11 meses
O cookie é definido pelo consentimento de cookies do RGPD para registar o consentimento do utilizador para os cookies na categoria «Funcional».
cookielawinfo-checkbox-necessário
11 meses
Este cookie é definido pelo plugin GDPR Cookie Consent. Os cookies são usados para armazenar o consentimento do utilizador para os cookies na categoria «Necessários».
cookielawinfo-checkbox-outros
11 meses
Este cookie é definido pelo plugin GDPR Cookie Consent. O cookie é utilizado para armazenar o consentimento do utilizador para os cookies na categoria «Outros».
cookielawinfo-checkbox-performance
11 meses
Este cookie é definido pelo plugin GDPR Cookie Consent. O cookie é utilizado para armazenar o consentimento do utilizador para os cookies na categoria «Desempenho».
política_de_cookies_visualizada
11 meses
O cookie é definido pelo plugin GDPR Cookie Consent e é usado para armazenar se o utilizador consentiu ou não com o uso de cookies. Ele não armazena nenhum dado pessoal.
Os cookies funcionais ajudam a executar determinadas funcionalidades, como partilhar o conteúdo do site em plataformas de redes sociais, recolher comentários e outras funcionalidades de terceiros.
Os cookies de desempenho são utilizados para compreender e analisar os principais índices de desempenho do site, o que ajuda a proporcionar uma melhor experiência ao utilizador para os visitantes.
Os cookies analíticos são utilizados para compreender como os visitantes interagem com o website. Estes cookies ajudam a fornecer informações sobre métricas, como o número de visitantes, taxa de rejeição, fonte de tráfego, etc.
Os cookies publicitários são utilizados para fornecer aos visitantes anúncios e campanhas de marketing relevantes. Estes cookies rastreiam os visitantes em vários sites e recolhem informações para fornecer anúncios personalizados.