In recent years, the financial services industry has been innovating technologically, supported by a complex ecosystem including banks, financial service providers, and start-ups (link). Within this blogpost, we showcase our vision of AI in Financial Services.
AI in Financial Services
From our point of view, we can group use cases in AI in three distinct entities, depending on the level of granularity
Microentity Level: At the microentity level, the main purpose of AI is the optimization of operations/transactions without compromising the quality of service. This includes business goals such as minimizing costs and improving user experience.
User level: At user level, the goal is to increase the user value (e.g. by keeping him engaged with the service) and control risk in the services provided to the user.
Company level: At company level, we aim to optimize the company portfolio and return on investments.
What kind of data do I need?
Although most of the use cases described below require specific data sources, we can define a few general data points for each entity. If you work in this area and see a data source you haven’t started acquiring in a structured way yet, get to it!
Microentity: Transactions can be characterized by a value, channel, date, involved parties and other characterization/description (e.g. food, electricity, …)
User: All users should have contractual data (contract start date, contract conditions) as well as behavioral data (customer service tickets, cash flow, …).
Company: A company is characterized by its portfolio size and distribution, external market indicators and economic context, and comparison with competitors.
Companies can also be grouped by its main mission/objective. In each of them, we can further detail use cases for each entity type.
Now, let’s review some specific use cases per company type in the financial services industry. Overall, the use cases focus on using AI for mitigating risks, providing a better experience for the user and guaranteeing business sustainability.
Banking and Money Transfer
Banking and Money Transfer companies transfer money from entity to entity. Companies within this group include Revolut, N26 and Monzo.
Microentity Level:
Transaction categorization: User transactions can be categorized by business name, location and business type, for instance. Take as an example one product by one of our clients, Pentadata, for merchant identification given a transaction description.
Fraudulent transaction detection: Detecting and blocking fraudulent transactions is critical to increase the confidence of customers in the services.
Money Laundering Detection: Machine learning has been replacing rule-based models for anti-money laundering operations, to minimize the number of false positives.
Predicting recurrent transactions: User transactions can be grouped into recurrent transactions to later on create visualizations on the fixed expenses.
User level
Optimizing spending habits / forecasting months spendings: Based on the historical data of the transactions, it is possible to forecast month spends and make personalized suggestions of spending habits to the user, per category.
Churn Prediction (CRM): Predicting which users are going to churn, and the best action to prevent them from churning, is one of the most common marketing use cases, and can help significantly increase the customer lifetime value.
Upselling (CRM): Determining which services we should upsell the user to, depending on the user behavioral patterns.
Chatbots/Automations: Automating the most frequent questions the users have will lead to reduced spendings in customer service.
Company level
Optimize physical store locations:
Forecasting business and market indicators: user growth, net working capital, …
Payments
Payment companies transfer money from a person to a company, such as Paypal and Stripe.
Microentity Level:
Fraudulent transaction detection: detecting and blocking fraudulent transactions – e.g. values out of the ordinary – can help reduce the occurrence of fraudulent transactions.
Predicting card declines: Payments can be declined by the issuing banks for various reasons, such as the card exceeding its credit limit. Predicting and addressing this is one of the use cases Paypal focused on the most using AI (link).
User level:
Optimizing user experience: explaining to the users the reason for certain actions in an automated manner (e.g. suspected fraud) leads to increased confidence in the services.
CRM promoting certain behaviors or feature-usage.
Paypal for business / stripe for business fees
Company level:
Optimizing flows of money: money transfers or currency exchange can be optimized to be performed at the optimal time period, to reduce transaction costs.
Internal investments of funds: deciding on the best way to invest funds.
Compliance detection in reports.
Financing
Finance companies – such as Cetelem, Klarna and Cashea, make loans to individuals and businesses.
Microentity Level:
Claims approval or denial: Automating and detecting errors in claims can reduce manual work and improve the claim processing speed. If you’re curious on how this could be applied in the healthcare domain, take a look at our blogpost we wrote a while back!
User level:
Credit scoring: credit scoring uses Artificial Intelligence to predict the likelihood of default based on demographic factors, payment history and other financial indicators. We also have a blogpost on more details on Artificial Intelligence applied to credit scoring. Similar use cases consider the renegotiation of payment conditions and default prediction.
Company level:
Portfolio optimization: at a company level, companies can aim to best determine the optimal risk level for credits (e.g. spread, short-term, long-term).
If you’re curious about some of these use cases but aren’t sure how beneficial it will be for your company, worry not! In our Data Ignite course, you can find out how to realize potential risks and mitigation strategies at the project conception stage, and learn a common language to discuss AI projects between technical and non-technical teams.
Curso, Modelos
Data Ignite
Find out how to realize potential risks and mitigation strategies
Within the investments and brokers groups, we consider companies that facilitate transactions between traders, sellers, or buyers. Examples include DeGiro, trading212, xtb and multiple P2P lending companies (PeerBerry, Mintos, estateguru, GoParity, etc).
Microentity Level:
Default or delays forecasts: forecasting payment delays/defaults is useful to take action ahead of time.
Trading bots: automating trading decisions at scale
User level:
User investment recommendations depending on risk profile of the user, recommend financial products to invest on.
Default prediction: predicting loan default before it happens to better determine the established conditions.
Risk assessment for loan originators: loans typically have a risk level associated, depending with the expected gain/risk trade off. Automating this based on historical data is important to make better decisions.
All CRM-related use cases
Company level:
Portfolio balancing: determine the best balance between risk and gain for the company’s portfolio.
Lastly, FinTech companies are software companies that provide services to Financial Services, and build part of the use cases listed above. The crypto Industry is also fulfilling the roles of brokers, banking, money transfer, payments, using different technologies.
There are some general use-cases related to KYC (Know your Customer), with general problems such as Legal Document Validation, knowledge tests…
Conclusion
AI in Financial Services is on the path to be a tool to revolutionize the provided services. At the scale of people using financial services, and the fact that most services are online now, facilitating the acquisition of data and the creation of value, there’s a huge potential for innovation and growth in this area.
Algoritmos de aprendizagem automática explicados: guia prático para modelos de IA
30 de dezembrode 2025 em
Guia: Explicação
Descubra os algoritmos de aprendizagem automática explicados com exemplos reais e orientações sobre como selecionar e implementar os modelos de IA adequados.
Um guia prático para reduzir o tempo de lançamento no mercado
22 de dezembrode 2025 em
Guia: Como fazer
Descubra como acelerar o seu lançamento com estratégias práticas para reduzir o tempo de comercialização. Aprenda a aproveitar a IA, a automação e os processos enxutos.
Utilizamos cookies no nosso site para lhe proporcionar a experiência mais relevante, lembrando as suas preferências e visitas repetidas. Ao clicar em «Aceitar tudo», concorda com a utilização de TODOS os cookies. No entanto, pode visitar «Definições de cookies» para fornecer um consentimento controlado.
Este site usa cookies para melhorar a sua experiência enquanto navega pelo site. Dentre eles, os cookies classificados como necessários são armazenados no seu navegador, pois são essenciais para o funcionamento das funcionalidades básicas do site. Também usamos cookies de terceiros que nos ajudam a analisar e entender como você usa este site. Esses cookies serão armazenados no seu navegador somente com o seu consentimento. Você também tem a opção de recusar esses cookies. No entanto, recusar alguns desses cookies pode afetar a sua experiência de navegação.
Os cookies necessários são absolutamente essenciais para o funcionamento adequado do site. Estes cookies garantem as funcionalidades básicas e os recursos de segurança do site, de forma anónima.
Cookie
Duração
Descrição
cookielawinfo-checkbox-analytics
11 meses
Este cookie é definido pelo plugin GDPR Cookie Consent. O cookie é usado para armazenar o consentimento do utilizador para os cookies na categoria "Análises".
cookielawinfo-checkbox-funcional
11 meses
O cookie é definido pelo consentimento de cookies do RGPD para registar o consentimento do utilizador para os cookies na categoria «Funcional».
cookielawinfo-checkbox-necessário
11 meses
Este cookie é definido pelo plugin GDPR Cookie Consent. Os cookies são usados para armazenar o consentimento do utilizador para os cookies na categoria «Necessários».
cookielawinfo-checkbox-outros
11 meses
Este cookie é definido pelo plugin GDPR Cookie Consent. O cookie é utilizado para armazenar o consentimento do utilizador para os cookies na categoria «Outros».
cookielawinfo-checkbox-performance
11 meses
Este cookie é definido pelo plugin GDPR Cookie Consent. O cookie é utilizado para armazenar o consentimento do utilizador para os cookies na categoria «Desempenho».
política_de_cookies_visualizada
11 meses
O cookie é definido pelo plugin GDPR Cookie Consent e é usado para armazenar se o utilizador consentiu ou não com o uso de cookies. Ele não armazena nenhum dado pessoal.
Os cookies funcionais ajudam a executar determinadas funcionalidades, como partilhar o conteúdo do site em plataformas de redes sociais, recolher comentários e outras funcionalidades de terceiros.
Os cookies de desempenho são utilizados para compreender e analisar os principais índices de desempenho do site, o que ajuda a proporcionar uma melhor experiência ao utilizador para os visitantes.
Os cookies analíticos são utilizados para compreender como os visitantes interagem com o website. Estes cookies ajudam a fornecer informações sobre métricas, como o número de visitantes, taxa de rejeição, fonte de tráfego, etc.
Os cookies publicitários são utilizados para fornecer aos visitantes anúncios e campanhas de marketing relevantes. Estes cookies rastreiam os visitantes em vários sites e recolhem informações para fornecer anúncios personalizados.